
Trending with Purpose
Jason Dixon

Monitoring

• Nagios

• Fault Detection

• Notifications

• Escalations

• Acknowledgements/Downtime

• http://www.nagios.org/

http://www.nagios.org/
http://www.nagios.org/

Nagios

• Pros

• Free

• Extensible

• Plugins

• Configuration templates

• Popular (lesser of all free evils)

• Log metrics (“performance data”)

Nagios

• Cons

• Interface

• (Lack of) Scalability

• Promotes bad habits

• Acknowledgements never expire

• Configuration (over-)flexibility

• Flapping

Nagios Demonstration

[URL redacted]

Trending

• PNP4Nagios

• Retrieves Nagios performance data

• Creates graphs with RRD

• Basic dashboard capabilities

• Limited introspection/correlation

• http://www.pnp4nagios.org/

http://www.pnp4nagios.org/
http://www.pnp4nagios.org/

PNP4Nagios Demonstration

[URL redacted]

Advanced Graphing

• Graphite

• Metric storage

• Complex graph creation

• Web and “CLI” interfaces

• Created and released by Orbitz.com

• http://graphite.wikidot.com/

http://graphite.wikidot.com/
http://graphite.wikidot.com/

Graphite
• Pros

• Horizontally scalable

• Rapid graph prototyping (CLI)

• Graph disparate data points

• Numerous formulas available

• derive, transform, average, sum, etc...

• Share graphs with other users

• Supports existing RRD databases

Graphite

• Cons

• Not a dashboard

• No hover details

Graphite Components

• Carbon storage engine

• agent - starts other daemons, receives
metrics and pipelines them to cache

• cache - caches metrics for real-time
graphing, pipelines them to persister

• persister - writes persistent data to disk

Graphite Components

• Whisper - metrics database format

• Supplanted RRDtool

• Accepts out-of-order data

• Supports pipelining of data in a single
operation (multiplexing)

Graphite Components

• Graphite

• Traditional web interface

• Javascript CLI

• Django application

Sending metrics to Graphite

• Connect to Carbon socket (tcp/2003)

• Send your data
my $sock = IO::Socket::INET->new(“127.0.0.1:2003”);
$sock->send(“endpoint.app.metric $value $epoch\n");

• ...

• Profit!

Graphite Demonstration

[URL redacted]

Trending and Profiling

• What should I trend?

• Application profiling data

• Operational profiling data

• Regression testing (releases)

Trending and Profiling
• Why should I trend?

• Trends can tell you when something is
about to break

• ... instead of hearing from your customers
that it’s broken

• Data can tell you when something already
broke but you don’t know it yet
(regression)

Trending and Profiling

• Lock-step with Business/Transactional monitoring

• Just because a host or service reponds, how do
you know it’s working?

• If you don’t know “good”, how will you
recognize “bad”?

• You don’t know what might break, so collect
everything now

Customer Quote

"I don't care if my servers are on fire as
long as they're making me money"

Next Steps

"Premature optimization is the
root of all evil"

Next Steps

"Those who ignore history are
doomed to repeat it"

Adding Value

• Interchange/PostgreSQL profiling

• How fast is our:

• function foo() for each iteration

• database query

• 3rd party API service (e.g. payment
gateway, social media)

Adding Value

• Interchange/PostgreSQL profiling

• How many times do we:

• call function foo()

• register a new user

• chargeback a sale

• ... on Monday of last week? Last month?

Adding Value

• Design/User-Experience

• A/B Testing

• Waterfall metrics

• Can we gather real-time waterfall
metrics and submit them via AJAX?

You can’t be serious!
This sounds like a lot of work.

Ok, let’s make it even easier.

StatsD

• "Measure Anything, Measure Everything"

• Created and released by Etsy

• Aggregate counters and timers

• Pipeline to Graphite

• Fire-and-forget (UDP)

• https://github.com/etsy/statsd

https://github.com/etsy/statsd
https://github.com/etsy/statsd

StatsD

• Perl client

• https://github.com/sivy/statsd-client
use Net::StatsD::Client;
my $c = Net::StatsD::Client->new();
$c->increment('endpoint.customer.app.metric'); # counter
$c->timing('endpoint.customer.app.foo', 200); # timing function, 200ms

• Too much activity? Sample it!
sample 10%, StatsD will multiply it up
$client->increment('endpoint.customer.app.metric', 0.1)

https://github.com/sivy/statsd-client
https://github.com/sivy/statsd-client

Questions?

Thank you

